

SNSSNSSNSSNS TABLE OBJECTTABLE OBJECTTABLE OBJECTTABLE OBJECT
SNS SNS SNS SNS MT4MT4MT4MT4 DEVELOPER DEVELOPER DEVELOPER DEVELOPER TTTTOOLSOOLSOOLSOOLS SERIES SERIES SERIES SERIES

Version 1.0 11/30/2009

By Steven N. ScottSteven N. ScottSteven N. ScottSteven N. Scott
(snscott @ www.kreslik.com forum)
Steven.n.scott@gmail.com

 2

SNS TABLE OBJECT

This MT4 library file is not a “stand alone” indicator.

It is an “importable” MQL4 LIBRARY that serves as a utility for developers to allow
them to create “data table” or “gauge” indicators more easily. By itself, it does

nothing. However, MQL4 programmers can use it to quickly add a data table
structure to their indicators without having to manually hard-code the creation of all

the individual LABEL objects that usually go into the creation of such a feature.

As a developer, you have complete control over the ROW and COLUMN coordinates of
your data table’s individual cells. You can specify the font, font size, and font color

for each cell and can also fine-adjust the positioning of text within a given cell using

ROW and COLUMN offset values (this is most useful when you have text of different
sizes on the same row and would like for the text in the cells to align more

aesthetically up and down within the row).

OBJECT ORIENTED PROGRAMMING

While MQL4 is not an “object oriented” programming language like JAVA or C#, I
have tried to maintain the spirit of OOP in how I created the API for this utility/tool.

The convention I have tried to consistently follow, in an attempt to make my MQL4

code “feel” more like an object oriented language, is to use naming for variables and

functions like this:

<object name>.<variable or function>

For example:

Table.SetText(int row, int col, string text);

 3

MQL4 INCLUDE HEADER FILES

MQL4 allows you to use the #INCLUDE directive to insert other files into your code,
which is quite useful for encapsulating the #IMPORT code necessary for referencing

functions in LIBRARY files.

 NOTE���� _

To use the examples or the SNS_TABLE_OBJECT in your own

indicators, you need to place the SNS_TABLE_OBJEXT.ex4 file in

your MetaTrader EXPERTS\LIBRARIES folder.

AND you need the SNS_OBJECTLIBRARY.EX4 file in your libraries

folder as well.

Because of an inconsistent quirk in how MQL4 searches for #INCLUDED files, you will

probably need to keep a copy of these MQH files in both your LIBRARIES folder

and your INDICATORS folder.

 4

EXAMPLES

The example table created in SNS_#TABLE is very simple and looks like this:

SNS_#TABLE does not do anything really useful and is meant only as a means of

easily demonstrating how to set up and use a table object in your own indicator.

SNS_#TABLE

This is a simple “test bed” indicator that uses the SNS_TABLE_OBJECT to create a

(meaningless) data table containing three rows with three columns in each row. The
first row, or row 0, is used as a chart header or title area and then rows 1 and 2 are

used to display “data”.

The code in SNS_#TABLE shows how to set up a table object and how to expose
whatever settings you would like to end users. For example, you could expose font

settings to your users. Then it shows how to put data into the table for display.

Putting data into the table is as simple as:

 Table.SetText(1,1,"Some data);

or
 Table.SetTextOverride(1,2,"More Stuff","Arial",12,CLR_NONE);

Where the first two parameters to SetText are the ROW/COLUMN (Y/X) coordinates
of the cell, the third parameter is the data or text to display in that cell. With

SetTextOverride there are three additional parameters allowing you to override the
font, size, and color for that cell (or leave any of them as the default as in the

example above using the MQL4 predefined constant CLR_NONE to not override the

assigned color for that cell. Passing in an empty string for the font name, or zero for
the size will likewise leave those values set to whatever the cell is currently

configured for). SetTextOverride does NOT change the default settings for the cell.

 5

SNS_MONEY_MANAGEMENT

This example is a modified version of the TRO_DRAGON_MONEY_MGMT indicator

that I originally modified to display just the information I was particularly interested
in.

I have now refactored this code to use the SNS_TABLE_OBJECT as a “real world”

demonstration of how to use the table in a real indicator.

This indicator uses the table object to display this data on a chart. It uses a table
with two columns and 10 rows (0-9). Row 0, Cell 0 is used for the table name or title

(Row 0, Cell 1 is ignored and “overwritten” by the large font header in Cell 0)

NOTE that nothing prevents your data from “overflowing” past the right side of a

“cell”. All a CELL really is an encapsulated MQL4 LABEL OBJECT (position and font
information is encapsulated).

BOTH of the example indicators provided use EXTERNally exposed properties that
allow an end user to change the row and column information, including individual cell

font settings. As MQL4 does not allow for EXTERN arrays, what I did is allow the user
to enter lists of data, such as cell font names, as semi-colon delimitated values which

the code then shows how to transpose into the two-dimensional CELL property
arrays.

 6

 EXTERN PROPERTIES EXAMPLE:

// List Column (X) and Row (Y) values as string with values separated by semi-colons

extern string Table.Columns = "0;140";
extern string Table.Rows = "0;25;50;70;100;125;150;175;200;225";

// List Cell Font attributes as a string with values separated by semi-colons - any left off are set to the DEFAULT values in Table.Initialize()

extern string Cell.Fonts = "Verdana Bold;Verdana;Verdana;Verdana;Verdana;Verdana;Verdana Bold";

extern string Cell.FontSizes = "14;0;12;12;12;12;14;14";
extern string Cell.FontColors =
"RoyalBlue;RoyalBlue;Orange;Orange;Gold;Gold;White;White;Red;Tomato;Red;Red;Orange;Orange;Orange;Orange;SteelBlue;SteelBlue;Orange;Orange";

EXAMPLE table initialization using above extern properties:

void Table.Initializevoid Table.Initializevoid Table.Initializevoid Table.Initialize(string name){

 string f[],fonts[ROWS][COLUMNS],fcolors[];
 color colors[ROWS][COLUMNS];
 int cols[],rows[],fsizes[],sizes[ROWS][COLUMNS];

 String.ToIntArray(cols,Table.Columns);
 String.ToIntArray(rows,Table.Rows);

 Table.SetCorner(Table.Corner);

 if (Table.Init(name,rows,cols)<0) Print("TABLE FAILED TO INITIALIZE");
 else Table.Initialized=true;

 // convert EXTERN string "arrays" into "real" arrays (because MT4 does not provide for EXTERN of array variables)

 int fas = String.ToArray(f,Cell.Fonts);
 int fss = String.ToIntArray(fsizes,Cell.FontSizes);
 int fcs = String.ToArray(fcolors,Cell.FontColors);

 //Plug values from one-dimensional arrays into corresponding two-dimensional cell arrays
 int i=0;int i=0;int i=0;int i=0;
 for (int r=0; r<ROWS; r++) {for (int r=0; r<ROWS; r++) {for (int r=0; r<ROWS; r++) {for (int r=0; r<ROWS; r++) {

 for(int c=0; c<COLUMNS; c++) {for(int c=0; c<COLUMNS; c++) {for(int c=0; c<COLUMNS; c++) {for(int c=0; c<COLUMNS; c++) {

 if(i<fas) fonts[r,c]=f[i];if(i<fas) fonts[r,c]=f[i];if(i<fas) fonts[r,c]=f[i];if(i<fas) fonts[r,c]=f[i];
 if(i<fss) sizes[r,c]=fsizes[i];if(i<fss) sizes[r,c]=fsizes[i];if(i<fss) sizes[r,c]=fsizes[i];if(i<fss) sizes[r,c]=fsizes[i];
 if(i<fcs) colors[r,cif(i<fcs) colors[r,cif(i<fcs) colors[r,cif(i<fcs) colors[r,c]=String.ToColor(fcolors[i]);]=String.ToColor(fcolors[i]);]=String.ToColor(fcolors[i]);]=String.ToColor(fcolors[i]);
 i++;i++;i++;i++;

 }}}}

 }}}}

 Table.SetFonts(fonts);
 Table.SetFontColors(colors);
 Table.SetFontSizes(sizes);

 // Now run through cells and find any that were not set (missing from EXTERN string) and set their properties to these DEFAULT values:

 Table.SetDefaultFont("Verdana",12,White);

}

You can easily copy and paste this code into your own indicators.

Note that by executing SetDefaultFonts at the end of the initialization process, you

insure the default font settings for any cells which did not have corresponding
property settings included in the EXTERN strings.

In the code example above, for example, I did not list a font name for EVERY cell in
the table, but I did include colors for every one. SetDefaultFonts makes sure the

cells I did not include font names for will be set to “Verdana”.

 7

All (or any) Table settings do not necessarily need to be exposed to end users. You
could, for example, allow the user to provide only a row spacing value that you would

then use programmatically to calculate each rows’ relative position to the preceding
row. Personally, I like to be able to tweak just about any setting possible in my

indicators so I tend to expose everything.

